ElectromagnetsWe defined POWER as the RATE of doing work. The actual work or capacity to do work is called ENERGY . Energy can be Kinetic (dynamic), Potential (static), or Radiant (electromagnetic) in nature. Energy, according physical law of "Conservation of Energy", is never lost nor gained. It may be changed from one form to another, but it never just "disappears". Just like in our resistor, we had energy being used which was dissipated as heat. The electrical energy was transformed into heat energy. It didn't disappear, it merely changed form. There are many other forms of energy. Some other forms of energy are light, sound, momentum, and MAGNETISM . We are all familiar with magnets, and their peculiar properties which make them seem almost magical. A magnet can be used to hold a screw onto a screwdriver, to lift a car, or find your way in the forest. But what is it that makes a magnet do what it does? ![]() From this, we have concluded that there is a NORTH POLE and a SOUTH POLE on every magnet. Typically the north pole is marked with an N, and south pole is marked with an S. Now if we take two magnets with known, marked poles, and bring the North Pole of one magnet close to the South Pole of the second magnet, the two magnets will PULL TOWARD one another until they are connected. If we reverse the experiment, and bring the North Pole of one magnet, near the North Pole of the second magnet, they will PUSH AWAY from each other. ![]() Why is it that magnets act this way? And why do magnets have poles? These are questions which science has found difficult to answer. It is believed, though, that according to the Molecular Theory of Magnetism inside of all magnets, the tiny molecules that the magnet are made of, are all little tiny magnets in themselves, and that they are all lined up in a row. ![]()
![]()
![]() ![]()
![]()
|
[COURSE INDEX] [ELECTRONICS GLOSSARY] [HOME]
Otherwise - please click to visit an advertiser so they know you saw their ad! |